Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Pharm Sci ; 113(1): 214-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38498417

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is often chemotherapy-resistant, and novel drug combinations would fill an unmet clinical need. Previously we reported synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells, but underlying protein-level interaction mechanisms remained unclear. We employed a reliable, sensitive, comprehensive, quantitative, high-throughput IonStar proteomic workflow to investigate the time course of gemcitabine and trabectedin effects, alone and combined, upon pancreatic cancer cells. MiaPaCa-2 cells were incubated with vehicle (controls), gemcitabine, trabectedin, and their combinations over 72 hours. Samples were collected at intervals and analyzed using the label-free IonStar liquid chromatography-mass spectrometry (LC-MS/MS) workflow to provide temporal quantification of protein expression for 4,829 proteins in four experimental groups. To characterize diverse signal transduction pathways, a comprehensive systems pharmacodynamic (SPD) model was developed. The analysis is presented in two parts. Here, Part I describes drug responses in cancer cell growth and migration pathways included in the full model: receptor tyrosine kinase- (RTK), integrin-, G-protein coupled receptor- (GPCR), and calcium-signaling pathways. The developed model revealed multiple underlying mechanisms of drug actions, provides insight into the basis of drug interaction synergism, and offers a scientific rationale for potential drug combination strategies.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Trabectedina/farmacologia , Desoxicitidina/farmacologia , Proteômica , Cromatografia Líquida , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
2.
Drug Resist Updat ; 73: 101064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387284

RESUMO

AIMS: Pancreatic ductal adenocarcinoma (PDAC) is often intrinsically-resistant to standard-of-care chemotherapies such as gemcitabine. Acquired gemcitabine resistance (GemR) can arise from treatment of initially-sensitive tumors, and chemotherapy can increase tumor aggressiveness. We investigated the molecular mechanisms of chemoresistance and chemotherapy-driven tumor aggressiveness, which are understood incompletely. METHODS: Differential proteomic analysis was employed to investigate chemotherapy-driven chemoresistance drivers and responses of PDAC cells and patient-derived tumor xenografts (PDX) having different chemosensitivities. We also investigated the prognostic value of FGFR1 expression in the efficacy of selective pan-FGFR inhibitor (FGFRi)-gemcitabine combinations. RESULTS: Quantitative proteomic analysis of a highly-GemR cell line revealed fibroblast growth factor receptor 1 (FGFR1) as the highest-expressed receptor tyrosine kinase. FGFR1 knockdown or FGFRi co-treatment enhanced gemcitabine efficacy and decreased GemR marker expression, implicating FGFR1 in augmentation of GemR. FGFRi treatment reduced PDX tumor progression and prolonged survival significantly, even in highly-resistant tumors in which neither single-agent showed efficacy. Gemcitabine exacerbated aggressiveness of highly-GemR tumors, based upon proliferation and metastatic markers. Combining FGFRi with gemcitabine or gemcitabine+nab-paclitaxel reversed tumor aggressiveness and progression, and prolonged survival significantly. In multiple PDAC PDXs, FGFR1 expression correlated with intrinsic tumor gemcitabine sensitivity. CONCLUSION: FGFR1 drives chemoresistance and tumor aggressiveness, which FGFRi can reverse.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Proliferação de Células , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteômica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/uso terapêutico
3.
Cell Rep Med ; 5(3): 101434, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38387463

RESUMO

The tumor-suppressor p53 is commonly inactivated in colorectal cancer and pancreatic ductal adenocarcinoma, but existing treatment options for p53-mutant (p53Mut) cancer are largely ineffective. Here, we report a therapeutic strategy for p53Mut tumors based on abnormalities in the DNA repair response. Investigation of DNA repair upon challenge with thymidine analogs reveals a dysregulation in DNA repair response in p53Mut cells that leads to accumulation of DNA breaks. Thymidine analogs do not interrupt DNA synthesis but induce DNA repair that involves a p53-dependent checkpoint. Inhibitors of poly(ADP-ribose) polymerase (PARPis) markedly enhance DNA double-strand breaks and cell death induced by thymidine analogs in p53Mut cells, whereas p53 wild-type cells respond with p53-dependent inhibition of the cell cycle. Combinations of trifluorothymidine and PARPi agents demonstrate superior anti-neoplastic activity in p53Mut cancer models. These findings support a two-drug combination strategy to improve outcomes for patients with p53Mut cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Pancreáticas , Humanos , Proteína Supressora de Tumor p53/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo do DNA , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , DNA/uso terapêutico , Timidina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
4.
Clin Cancer Res ; 30(7): 1367-1381, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270582

RESUMO

PURPOSE: Paracrine activation of pro-fibrotic hedgehog (HH) signaling in pancreatic ductal adenocarcinoma (PDAC) results in stromal amplification that compromises tumor drug delivery, efficacy, and patient survival. Interdiction of HH-mediated tumor-stroma crosstalk with smoothened (SMO) inhibitors (SHHi) "primes" PDAC patient-derived xenograft (PDX) tumors for increased drug delivery by transiently increasing vascular patency/permeability, and thereby macromolecule delivery. However, patient tumor isolates vary in their responsiveness, and responders show co-induction of epithelial-mesenchymal transition (EMT). We aimed to identify the signal derangements responsible for EMT induction and reverse them and devise approaches to stratify SHHi-responsive tumors noninvasively based on clinically-quantifiable parameters. EXPERIMENTAL DESIGN: Animals underwent diffusion-weighted magnetic resonance (DW-MR) imaging for measurement of intratumor diffusivity. In parallel, tissue-level deposition of nanoparticle probes was quantified as a marker of vascular permeability/perfusion. Transcriptomic and bioinformatic analysis was employed to investigate SHHi-induced gene reprogramming and identify key "nodes" responsible for EMT induction. RESULTS: Multiple patient tumor isolates responded to short-term SHH inhibitor exposure with increased vascular patency and permeability, with proportionate increases in tumor diffusivity. Nonresponding PDXs did not. SHHi-treated tumors showed elevated FGF drive and distinctly higher nuclear localization of fibroblast growth factor receptor (FGFR1) in EMT-polarized tumor cells. Pan-FGFR inhibitor NVP-BGJ398 (Infigratinib) reversed the SHHi-induced EMT marker expression and nuclear FGFR1 accumulation without compromising the enhanced permeability effect. CONCLUSIONS: This dual-hit strategy of SMO and FGFR inhibition provides a clinically-translatable approach to compromise the profound impermeability of PDAC tumors. Furthermore, clinical deployment of DW-MR imaging could fulfill the essential clinical-translational requirement for patient stratification.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Xenoenxertos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Modelos Animais de Doenças , Linhagem Celular Tumoral
5.
J Pharm Sci ; 113(1): 72-84, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844759

RESUMO

Therapeutic antibodies have shown little efficacy in the treatment of pancreatic ductal adenocarcinomas (PDAC). Tumor desmoplasia, hypovascularity, and poor perfusion result in insufficient tumor cell exposure, contributing to treatment failure. Smoothened inhibitors of hedgehog signaling (sHHi) increase PDAC tumor permeability, perfusion, and drug delivery, and provide a tool to develop a quantitative, mechanistic understanding as to how the temporal dynamics of tumor priming can impact intratumor distribution of monoclonal antibodies (mAb). A linked pharmacokinetic (PK)/pharmacodynamic (PD) model was developed to integrate the plasma and tumor PK of a sHHi priming agent with its effects upon downstream stromal biomarkers Gli1, hyaluronic acid, and interstitial fluid pressure in PDAC patient-derived xenograft (PDX) tumors. In parallel, in situ tumor concentrations of cetuximab (CTX: anti-epidermal growth factor receptor; EGFR) were quantified as a marker for tumor delivery of mAb or antibody-drug conjugates. A minimal, physiologically-based pharmacokinetic (mPBPK) model was constructed to link sHHi effects upon mechanistic effectors of tumor barrier compromise with the intratumor distribution of CTX, and CTX occupancy of EGFR in tumors. Integration of the mPBPK model of mAb deposition and intratumor distribution with the PK/PD model of tumor responses to priming not only identified physiological parameters that are critical for tumor antibody distribution, but also provides insight into dosing regimens that could achieve maximal tumor disposition of therapeutic antibodies under conditions of transient PDAC tumor permeability barrier compromise that mechanistically-diverse tumor priming strategies may achieve.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Cetuximab/uso terapêutico , Proteínas Hedgehog/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Sistemas de Liberação de Medicamentos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Anticorpos Monoclonais/farmacocinética , Receptores ErbB
6.
J Pharm Sci ; 113(1): 235-245, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918792

RESUMO

Despite decades of research efforts, pancreatic adenocarcinoma (PDAC) continues to present a formidable clinical challenge, demanding innovative therapeutic approaches. In a prior study, we reported the synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells. To investigate potential mechanisms underlying this synergistic pharmacodynamic interaction, liquid chromatography-mass spectrometry-based proteomic analysis was performed, and a systems pharmacodynamics model (SPD) was developed to capture pancreatic cancer cell responses to gemcitabine and trabectedin, alone and combined, at the proteome level. Companion report Part I describes the proteomic workflow and drug effects on the upstream portion of the SPD model related to cell growth and migration, specifically the RTK-, integrin-, GPCR-, and calcium-signaling pathways. This report presents Part II of the SPD model. Here we describe drug effects on pathways associated with cell cycle, DNA damage response (DDR), and apoptosis, and provide insights into underlying mechanisms. Drug combination effects on protein changes in the cell cycle- and apoptosis pathways contribute to the synergistic effects observed between gemcitabine and trabectedin. The SPD model was subsequently incorporated into our previously-established cell cycle model, forming a comprehensive, multi-scale quantification platform for evaluating drug effects across multiple scales, spanning the proteomic-, cellular-, and subcellular levels. This approach provides a quantitative mechanistic framework for evaluating drug-drug interactions in combination chemotherapy, and could potentially serve as a tool to predict combinatorial efficacy and assist in target selection.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Trabectedina/farmacologia , Trabectedina/uso terapêutico , Desoxicitidina/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Proteômica , Linhagem Celular Tumoral , Ciclo Celular , Proliferação de Células , Apoptose , Reparo do DNA
8.
Br J Pharmacol ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37994108

RESUMO

BACKGROUND AND PURPOSE: Elevated fibroblast growth factor receptor (FGFR) activity correlates with pancreatic adenocarcinoma (PDAC) progression and poor prognosis. However, its potential as a therapeutic target remains largely unexplored. EXPERIMENTAL APPROACH: The mechanisms of action and therapeutic effects of selective pan-FGFR inhibitors (pan-FGFRi) were explored using in vitro and in vivo PDAC models ranging from gemcitabine-sensitive to highly gemcitabine-resistant (GemR). Gain-/loss-of-function investigations were employed to define the role of individual FGFRs in cell proliferation, migration, and treatment response and resistance. RESULTS: The pan-FGFRi NVP-BGJ398 significantly inhibited cell proliferation, migration, and invasion, and downregulated key cell survival- and invasiveness markers in multiple PDAC cell lines. Gemcitabine is a standard-of-care for PDAC, but development of resistance to gemcitabine (GemR) compromises its efficacy. Acquired GemR was modelled experimentally by developing highly GemR cells using escalating gemcitabine exposure in vitro and in vivo. FGFRi treatment inhibited GemR cell proliferation, migration, GemR marker expression, and tumour progression. FGFR2 or FGFR3 loss-of-function by shRNA knockdown failed to decrease cell growth, whereas FGFR1 knockdown was lethal. FGFR1 overexpression promoted cell migration more than proliferation, and reduced FGFRi-mediated inhibition of proliferation and migration. Single-agent FGFRi suppressed the viability and growth of multiple patient-derived xenografts inversely with respect to FGFR1 expression, underscoring the influence of FGFR1-dependent tumour responses to FGFRi. Importantly, secondary data analysis showed that PDAC tumours expressed FGFR1 at lower levels than in normal pancreas tissue. CONCLUSIONS AND IMPLICATIONS: Single-agent FGFR inhibitors mediate selective, molecularly-targeted suppression of PDAC proliferation, and their effects are greatest in PDAC tumours expressing low-to-moderate levels of FGFR1.

9.
J Proteome Res ; 22(12): 3780-3792, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37906173

RESUMO

Pancreatic cancer patients have poor survival rates and are frequently treated using gemcitabine (Gem). However, initial tumor sensitivity often gives way to rapid development of resistance. Gem-based drug combinations are employed to increase efficacy and mitigate resistance, but our understanding of molecular-level drug interactions, which could assist in the development of more effective therapeutic regimens, is limited. Global quantitative proteomic analysis could provide novel mechanistic insights into drug combination interactions, but it is challenging to achieve high-quality quantitative proteomics analysis of the large sample sets that are typically required for drug combination studies. Here, we investigated molecular-level temporal interactions of Gem with BGJ398 (infigratinib), a recently approved pan-FGFR inhibitor, in multiple treatment groups (N = 42 samples) using IonStar, a robust large-scale proteomics method that employs well-controlled, ultrahigh-resolution MS1 quantification. A total of 5514 proteins in the sample set were quantified without missing data, requiring >2 unique peptides/protein, <1% protein false discovery rate (FDR), <0.1% peptide FDR, and CV < 10%. Functional analysis of the differentially altered proteins revealed drug-dysregulated processes such as metabolism, apoptosis, and antigen presentation pathways. These changes were validated experimentally using Seahorse metabolic assays and immunoassays. Overall, in-depth analysis of large-scale proteomics data provided novel insights into possible mechanisms by which FGFR inhibitors complement and enhance Gem activity in pancreatic cancers.


Assuntos
Neoplasias Pancreáticas , Proteoma , Humanos , Proteoma/análise , Proteômica/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Gencitabina , Peptídeos/análise , Apoptose , Quimioterapia Combinada , Combinação de Medicamentos , Linhagem Celular Tumoral , Neoplasias Pancreáticas
10.
J Proteome Res ; 22(7): 2436-2449, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37311110

RESUMO

Tumor-stroma interactions are critical in pancreatic ductal adenocarcinoma (PDAC) progression and therapeutics. Patient-derived xenograft (PDX) models recapitulate tumor-stroma interactions, but the conventional antibody-based immunoassay is inadequate to discriminate tumor and stromal proteins. Here, we describe a species-deconvolved proteomics approach embedded in IonStar that can unambiguously quantify the tumor (human-derived) and stromal (mouse-derived) proteins in PDX samples, enabling unbiased investigation of tumor and stromal proteomes with excellent quantitative reproducibility. With this strategy, we studied tumor-stroma interactions in PDAC PDXs that responded differently to Gemcitabine combined with nab-Paclitaxel (GEM+PTX) treatment. By analyzing 48 PDX animals 24 h/192 h after treatment with/without GEM+PTX, we quantified 7262 species-specific proteins under stringent cutoff criteria, with high reproducibility. For the PDX sensitive to GEM+PTX, the drug-dysregulated proteins in tumor cells were involved in suppressed oxidative phosphorylation and the TCA cycle, and in the stroma, inhibition of glycolytic activity was predominant, suggesting a relieved reverse Warburg effect by the treatment. In GEM+PTX-resistant PDXs, protein changes suggested extracellular matrix deposition and activation of tumor cell proliferation. Key findings were validated by immunohistochemistry (IHC). Overall, this approach provides a species-deconvolved proteomic platform that could advance cancer therapeutic studies by enabling unbiased exploration of tumor-stroma interactions in the large number of PDX samples required for such investigations.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Gencitabina , Xenoenxertos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/patologia , Proteômica , Reprodutibilidade dos Testes
11.
Life (Basel) ; 13(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983764

RESUMO

Herein, we describe the global comparison of miRNAs in human pancreatic cancer tumors, adjacent normal tissue, and matched patient-derived xenograft models using microarray screening. RNA was extracted from seven tumor, five adjacent normal, and eight FI PDX tumor samples and analyzed by Affymetrix GeneChip miRNA 4.0 array. A transcriptome analysis console (TAC) was used to generate comparative lists of up- and downregulated miRNAs for the comparisons, tumor vs. normal and F1 PDX vs. tumor. Particular attention was paid to miRNAs that were changed in the same direction in both comparisons. We identified the involvement in pancreatic tumor tissue of several miRNAs, including miR4534, miR3154, and miR4742, not previously highlighted as being involved in this type of cancer. Investigation in the parallel mRNA and protein lists from the same samples allowed the elimination of proteins where altered expression correlated with corresponding mRNA levels and was thus less likely to be miRNA regulated. Using the remaining differential expression protein lists for proteins predicted to be targeted for differentially expressed miRNA on our list, we were able to tentatively ascribe specific protein changes to individual miRNA. Particularly interesting target proteins for miRs 615-3p, 2467-3p, 4742-5p, 509-5p, and 605-3p were identified. Prominent among the protein targets are enzymes involved in aldehyde metabolism and membrane transport and trafficking. These results may help to uncover vulnerabilities that could enable novel approaches to treating pancreatic cancer.

12.
Acta Biomater ; 158: 611-624, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603732

RESUMO

Nanocarriers are candidates for cancer chemotherapy delivery, with growing numbers of clinically-approved nano-liposomal formulations such as Doxil® and Onivyde® (liposomal doxorubicin and irinotecan) providing proof-of-concept. However, their complex biodistribution and the varying susceptibility of individual patient tumours to nanoparticle deposition remains a clinical challenge. Here we describe the preparation, characterisation, and biological evaluation of phospholipidic structures containing solid magnetic cores (SMLs) as an MRI-trackable surrogate that could aid in the clinical development and deployment of nano-liposomal formulations. Through the sequential assembly of size-defined iron oxide nanoparticle clusters with a stabilizing anionic phospholipid inner monolayer and an outer monolayer of independently-selectable composition, SMLs can mimic physiologically a wide range of nano-liposomal carrier compositions. In patient-derived xenograft models of pancreatic adenocarcinoma, similar tumour deposition of SML and their nano-liposomal counterparts of identical bilayer composition was observed in vivo, both at the tissue level (fluorescence intensities of 1.5 × 108 ± 1.8 × 107 and 1.2 × 108 ± 6.3 × 107, respectively; ns, 99% confidence interval) and non-invasively using MR imaging. We observed superior capabilities of SML as a surrogate for nano-liposomal formulations as compared to other clinically-approved iron oxide nano-formulations (ferumoxytol). In combination with diagnostic and therapeutic imaging tools, SMLs have high clinical translational potential to predict nano-liposomal drug carrier deposition and could assist in stratifying patients into treatment regimens that promote optimal tumour deposition of nanoparticulate chemotherapy carriers. STATEMENT OF SIGNIFICANCE: Solid magnetoliposomes (SMLs) with compositions resembling that of FDA-approved agents such as Doxil® and Onivyde® offer potential application as non-invasive MRI stratification agents to assess extent of tumour deposition of nano-liposomal therapeutics prior to administration. In animals with pancreatic adenocarcinoma (PDAC), SML-PEG exhibited (i) tumour deposition comparable to liposomes of the same composition; (ii) extended circulation times, with continued tumour deposition up to 24 hours post-injection; and (iii) MRI capabilities to determine tumour deposition up to 1 week post-injection, and confirmation of patient-to-patient variation in nanoparticulate deposition in tumours. Hence SMLs with controlled formulation are a step towards non-invasive MRI stratification approaches for patients, enabled by evaluation of the extent of deposition in tumours prior to administration of nano-liposomal therapeutics.


Assuntos
Adenocarcinoma , Nanopartículas , Neoplasias Pancreáticas , Animais , Humanos , Distribuição Tecidual , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Doxorrubicina , Lipossomos/química
13.
AAPS J ; 24(6): 108, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229752

RESUMO

The multi-drug combination regime, FOLFIRINOX, is a standard of care chemotherapeutic therapy for pancreatic cancer patients. However, systematic evaluation of potential pharmacodynamic interactions among multi-drug therapy has not been reported previously. Here, pharmacodynamic interactions of the FOLFIRINOX agents (5-fluorouracil (5-FU), oxaliplatin (Oxa) and SN-38, the active metabolite of irinotecan) were assessed across a panel of primary and established pancreatic cancer cells. Inhibition of cell proliferation was quantified for each drug, alone and in combination, to obtain quantitative, drug-specific interaction parameters and assess the nature of drug interactions. The experimental data were analysed assuming Bliss independent interactions, and nonlinear regression model fitting was conducted in SAS. Estimates of the drug interaction term, psi (ψ), revealed that the Oxa/SN-38 combination appeared synergistic in PANC-1 (ψ = 0.6, 95% CI = 0.4, 0.9) and modestly synergistic, close to additive, in MIAPaCa-2 (ψ = 0.8, 95% CI = 0.6, 1.0) in 2D assays. The triple combination was strongly synergistic in MIAPaCa-2 (ψ = 0.2, 95% CI = 0.1, 0.3) and modestly synergistic/borderline additive in PANC-1 2D (ψ = 0.8, 95% CI = 0.6, 1.0). The triple combination showed antagonistic interactions in the primary PIN-127 and 3D PANC-1 model (ψ > 1). Quantitative pharmacodynamic interactions have not been described for the FOLFIRINOX regimen; this analysis suggests a complex interplay among the three chemotherapeutic agents. Extension of this pharmacodynamic analysis approach to clinical/translational studies of the FOLFIRINOX combination could reveal additional pharmacodynamic interactions and guide further refinement of this regimen to achieve optimal clinical responses.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Técnicas de Cultura de Células , Combinação de Medicamentos , Fluoruracila/farmacologia , Humanos , Irinotecano/farmacologia , Leucovorina , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
14.
Mol Cell Proteomics ; 21(10): 100409, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084875

RESUMO

Pancreatic adenocarcinoma (PDAC) is highly refractory to treatment. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and development of Gem resistance (GemR) compromises its efficacy. Highly GemR clones of Gem-sensitive MIAPaCa-2 cells were developed to investigate the molecular mechanisms of GemR and implemented global quantitative differential proteomics analysis with a comprehensive, reproducible ion-current-based MS1 workflow to quantify ∼6000 proteins in all samples. In GemR clone MIA-GR8, cellular metabolism, proliferation, migration, and 'drug response' mechanisms were the predominant biological processes altered, consistent with cell phenotypic alterations in cell cycle and motility. S100 calcium binding protein A4 was the most downregulated protein, as were proteins associated with glycolytic and oxidative energy production. Both responses would reduce tumor proliferation. Upregulation of mesenchymal markers was prominent, and cellular invasiveness increased. Key enzymes in Gem metabolism pathways were altered such that intracellular utilization of Gem would decrease. Ribonucleoside-diphosphate reductase large subunit was the most elevated Gem metabolizing protein, supporting its critical role in GemR. Lower Ribonucleoside-diphosphate reductase large subunit expression is associated with better clinical outcomes in PDAC, and its downregulation paralleled reduced MIAPaCa-2 proliferation and migration and increased Gem sensitivity. Temporal protein-level Gem responses of MIAPaCa-2 versus GemR cell lines (intrinsically GemR PANC-1 and acquired GemR MIA-GR8) implicate adaptive changes in cellular response systems for cell proliferation and drug transport and metabolism, which reduce cytotoxic Gem metabolites, in DNA repair, and additional responses, as key contributors to the complexity of GemR in PDAC. These findings additionally suggest targetable therapeutic vulnerabilities for GemR PDAC patients.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Ribonucleosídeos , Humanos , Linhagem Celular Tumoral , Difosfatos/metabolismo , Difosfatos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/metabolismo , Proteômica , Ribonucleosídeos/uso terapêutico , Proteína A4 de Ligação a Cálcio da Família S100 , Gencitabina , Neoplasias Pancreáticas
15.
Acta Biomater ; 152: 393-405, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007780

RESUMO

Multicore magnetic iron oxide nanoparticles, nanoflowers (NFs), have potential biomedical applications as efficient mediators for AC-magnetic field hyperthermia and as contrast agents for magnetic resonance imaging due to their strong magnetic responses arising from complex internal magnetic ordering. To realise these applications amenable surface chemistry must be engineered that maintain particle dispersion. Here a catechol-derived grafting approach is described to strongly bind polyethylene glycol (PEG) to NFs and provide stable hydrogen-bonded hydrated layers that ensure good long-term colloidal stability in buffers and media even at clinical MRI field strength and high concentration. The approach enables the first comprehensive study into the MRI (relaxivity) and hyperthermic (SAR) efficiencies of fully dispersed NFs. The predominant role of internal magnetisation dynamics in providing high relaxivity and SAR is confirmed, and it is shown that these properties are unaffected by PEG molecular weight or corona formation in biological environments. This result is in contrast to traditional single core nanoparticles which have significantly reduced SAR and relaxivity upon PEGylation and on corona formation, attributed to reduced Brownian contributions and weaker NP solvent interactions. The PEGylated NF suspensions described here exhibit usable blood circulation times and promising retention of relaxivity in-vivo due to the strongly anchored PEG layer. This approach to biomaterials design addresses the challenge of maintaining magnetic efficiency of magnetic nanoparticles in-vivo for applications as theragnostic agents. STATEMENT OF SIGNIFICANCE: Application of multicore magnetic iron-oxide nanoflowers (NFs) as efficient mediators for AC-field hyperthermia and as contrast agents for MR imaging has been limited by lack of colloidal stability in complex media and biosystems. The optimized materials design presented is shown to reproducibly provide PEG grafted NF suspensions of exceptional colloidal stability in buffers and complex media, with significant hyperthermic and MRI utility which is unaffected by PEG length, anchoring group or bio-molecular adsorption. Deposition in the selected pancreatic tumour model mirrors liposomal formulations providing a quantifiable probe of tissue-level liposome deposition and relaxivity is retained in the tumour microenvironment. Hence the biomaterials design addresses the longstanding challenges of maintaining the in vivo magnetic efficiency of nanoparticles as theragnostic agents.


Assuntos
Meios de Contraste , Hipertermia Induzida , Materiais Biocompatíveis , Catecóis , Meios de Contraste/química , Meios de Contraste/farmacologia , Compostos Férricos , Hidrogênio , Ferro , Lipossomos , Imageamento por Ressonância Magnética/métodos , Óxidos/química , Polietilenoglicóis/química , Solventes , Suspensões
16.
Transl Oncol ; 19: 101390, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35290919

RESUMO

Irinotecan (IRI) loaded actively into PEGylated liposomes via a sucrosulfate gradient has been approved recently to treat advanced pancreatic cancer. In this study, a similar liposomal composition was developed that includes a low mole fraction (1 mol.%) of porphyrin-phospholipid (PoP), a photosensitizer that stably incorporates into liposomes, to confer light-triggered IRI release. IRI-loaded PoP liposomes containing ammonium sucrosulfate (ASOS) as a complexing agent were more stable in serum compared to liposomes employing the more conventional ammonium sulfate. Without irradiation, PoP IRI liposomes released less than 5% IRI during 8 h of incubation in bovine serum at 37 °C, but released over 90% of the drug within minutes of exposure to red light (665 nm) irradiation. A single treatment with IRI-PoP liposomes and light exposure (15 mg/kg IRI with 250 J/cm2) resulted in tumor eradication in mice bearing either MIA PaCa-2 tumors or low-passage patient-derived tumor xenografts that recapitulate characteristics of the clinical disease. Analogous monotherapies of IRI or photodynamic therapy were ineffective in controlling tumor growth. Enhanced drug uptake could be visualized within laser-treated tumors by direct in situ imaging of irinotecan. Biodistribution analysis of IRI, its active metabolite (SN-38), and major metabolite (SN-38 G) showed that laser treatment significantly increased tumor accumulation of all IRI-derived molecular species. A pharmacokinetic model that hypothesized tumor vasculature permeabilization as the primary reason underlying the increased drug deposition accounted for the enhanced drug influx into tumors.

17.
J Pharmacol Exp Ther ; 377(3): 370-384, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753538

RESUMO

Median survival of pancreatic ductal adenocarcinoma cancer (PDAC) is 6 months, with 9% 5-year survival. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and combination therapies integrating novel targeted agents could improve outcomes. Fibroblast growth factor (FGF) receptors (FGFRs) play important roles in PDAC growth and invasion. Therefore, FGFR inhibitors (FGFRi) merit further investigation. Efficacy of Gem combined with NVP-BGJ398, a pan-FGFRi, was investigated in multiple PDAC cell lines exposed to the drugs alone and combined. Cell cycle distribution and cell numbers were quantified over time. Two pharmacodynamic models were developed to investigate Gem/BGJ398 interactions quantitatively: a drug-mediated cell proliferation/death model, and a drug-perturbed cell cycle progression model. The models captured temporal changes in cell numbers, cell cycle progression, and cell death during drug exposure. Simultaneous fitting of all data provided reasonable parameter estimates. Therapeutic efficacy was then evaluated in a PDAC mouse model. Compared with Gem alone, combined Gem + FGFRi significantly downregulated ribonucleotide-diphosphate reductase large subunit 1 (RRM1), a gemcitabine resistance (GemR) biomarker, suggesting the FGFRi inhibited GemR emergence. The cell proliferation/death pharmacodynamic model estimated the drug interaction coefficient ψ death = 0.798, suggesting synergistic effects. The mechanism-based cell cycle progression model estimated drug interaction coefficient ψ cycle = 0.647, also suggesting synergy. Thus, FGFR inhibition appears to synergize with Gem in PDAC cells and tumors by sensitizing cells to Gem-mediated inhibition of proliferation and cell cycle progression. SIGNIFICANCE STATEMENT: An integrated approach of quantitative modeling and experimentation was employed to investigate the nature of fibroblast growth factor receptor inhibitor (FGFRi)/gemcitabine (Gem) interaction, and to identify mechanisms by which FGFRi exposure reverses Gem resistance in pancreatic cancer cells. The results show that FGFRi interacts synergistically with Gem to sensitize pancreatic cancer cells and tumors to Gem-mediated inhibition of proliferation and cell cycle progression. Thus, addition of FGFRi to standard-of-care Gem treatment could be a clinically deployable approach to enhance therapeutic benefit to pancreatic cancer patients.


Assuntos
Desoxicitidina/análogos & derivados , Cinética , Neoplasias Pancreáticas , Inibidores de Proteínas Quinases , Gencitabina
18.
BMC Cancer ; 20(1): 1024, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097020

RESUMO

BACKGROUND: For most patients, pancreatic adenocarcinoma responds poorly to treatment, and novel therapeutic approaches are needed. Standard-of-care paclitaxel (PTX), combined with birinapant (BRP), a bivalent mimetic of the apoptosis antagonist SMAC (second mitochondria-derived activator of caspases), exerts synergistic killing of PANC-1 human pancreatic adenocarcinoma cells. METHODS: To investigate potential mechanisms underlying this synergistic pharmacodynamic interaction, data capturing PANC-1 cell growth, apoptosis kinetics, and cell cycle distribution were integrated with high-quality IonStar-generated proteomic data capturing changes in the relative abundance of more than 3300 proteins as the cells responded to the two drugs, alone and combined. RESULTS: PTX alone (15 nM) elicited dose-dependent G2/M-phase arrest and cellular polyploidy. Combined BRP/PTX (150/15 nM) reduced G2/M by 35% and polyploid cells by 45%, and increased apoptosis by 20%. Whereas BRP or PTX alone produced no change in the pro-apoptotic protein pJNK, and a slight increase in the anti-apoptotic protein Bcl2, the drug combination increased pJNK and decreased Bcl2 significantly compared to the vehicle control. A multi-scale, mechanism-based mathematical model was developed to investigate integrated birinapant/paclitaxel effects on temporal profiles of key proteins involved in kinetics of cell growth, death, and cell cycle distribution. CONCLUSIONS: The model, consistent with the observed reduction in the Bcl2/BAX ratio, suggests that BRP-induced apoptosis of mitotically-arrested cells is a major contributor to the synergy between BRP and PTX. Coupling proteomic and cellular response profiles with multi-scale pharmacodynamic modeling provides a quantitative mechanistic framework for evaluating pharmacodynamically-based drug-drug interactions in combination chemotherapy, and could potentially guide the development of promising drug regimens.


Assuntos
Adenocarcinoma/metabolismo , Dipeptídeos/farmacologia , Indóis/farmacologia , Paclitaxel/farmacologia , Neoplasias Pancreáticas/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MAP Quinase Quinase 4/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteômica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
19.
Br J Cancer ; 123(10): 1502-1512, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913288

RESUMO

BACKGROUND: Antibody-drug conjugate (ADC) construction poses numerous challenges that limit clinical progress. In particular, common bioconjugation methods afford minimal control over the site of drug coupling to antibodies. Here, such difficulties are overcome through re-bridging of the inter-chain disulfides of cetuximab (CTX) with auristatin-bearing pyridazinediones, to yield a highly refined anti-epidermal growth factor receptor (EGFR) ADC. METHODS: In vitro and in vivo assessment of ADC activity was performed in KRAS mutant pancreatic cancer (PaCa) models with known resistance to CTX therapy. Computational modelling was employed for quantitative prediction of tumour response to various ADC dosing regimens. RESULTS: Site-selective coupling of an auristatin to CTX yielded an ADC with an average drug:antibody ratio (DAR) of 3.9, which elicited concentration- and EGFR-dependent cytotoxicity at sub-nanomolar potency in vitro. In human xenografts, the ADC inhibited tumour growth and prolonged survival, with no overt signs of toxicity. Key insights into factors governing ADC efficacy were obtained through a robust mathematical framework, including target-mediated dispositional effects relating to antigen density on tumour cells. CONCLUSIONS: Together, our findings offer renewed hope for CTX in PaCa therapy, demonstrating that it may be reformatted as a next-generation ADC and combined with a predictive modelling tool to guide successful translation.


Assuntos
Aminobenzoatos/administração & dosagem , Cetuximab/administração & dosagem , Imunoconjugados , Oligopeptídeos/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Aminobenzoatos/química , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Cetuximab/química , Drogas em Investigação/síntese química , Drogas em Investigação/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/imunologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Terapia de Alvo Molecular/métodos , Mutação , Oligopeptídeos/química , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
20.
J Control Release ; 324: 610-619, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32504778

RESUMO

Pancreatic cancer is usually advanced and drug resistant at diagnosis. A potential therapeutic approach outlined here uses nanoparticle (NP)-based drug carriers, which have unique properties that enhance intra-tumor drug exposure and reduce systemic toxicity of encapsulated drugs. Here we report that patients whose pancreatic cancers express elevated levels of Death Receptor 5 (DR5) and its downstream regulators/effectors FLIP, Caspase-8, and FADD had particularly poor prognoses. To take advantage of elevated expression of this pathway, we designed drug-loaded NPs with a surface-conjugated αDR5 antibody (AMG 655). Binding and clustering of the DR5 is a prerequisite for efficient apoptosis initiation, and the αDR5-NPs were indeed found to activate apoptosis in multiple pancreatic cancer models, whereas the free antibody did not. The extent of apoptosis induced by αDR5-NPs was enhanced by down-regulating FLIP, a key modulator of death receptor-mediated activation of caspase-8. Moreover, the DNA topoisomerase-1 inhibitor camptothecin (CPT) down-regulated FLIP in pancreatic cancer models and enhanced apoptosis induced by αDR5-NPs. CPT-loaded αDR5-NPs significantly increased apoptosis and decreased cell viability in vitro in a caspase-8- and FADD-dependent manner consistent with their expected mechanism-of-action. Importantly, CPT-loaded αDR5-NPs markedly reduced tumor growth rates in vivo in established pancreatic tumor models, inducing regressions in one model. These proof-of-concept studies indicate that αDR5-NPs loaded with agents that downregulate or inhibit FLIP are promising candidate agents for the treatment of pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Linhagem Celular Tumoral , Portadores de Fármacos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...